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Large viscoplastic deformations of shells. Theory and finite element
formulation

C. Sansour, F. G. Kollmann

Abstract The paper is concerned with large viscoplastic
deformations of shells when the constitutive model is
based on the concept of uni®ed evolution equations.
Speci®cally the model due to Bodner and Partom is
modi®ed so as to ®t in the frame of multiplicative visco-
plasticity. Although the decomposition of the deformation
gradient in elastic and inelastic parts is employed, no use
is made of the concept of the intermediate con®guration. A
logarithmic elastic strain measure is used. An algorithm
for the evaluation of the exponential map for nonsym-
metric arguments as well as a closed form of the tangent
operator are given. On the side of the shell theory itself, the
shell model is chosen so as to allow for the application of a
three-dimensional constitutive law. The shell theory, ac-
cordingly, allows for thickness change and is characterized
by seven parameters. The constitutive law is evaluated
pointwise over the shell thickness to allow for general
cyclic loading. An enhanced strain ®nite element method
is given and various examples of large shell deformations
including loading-unloading cycles are presented.

1
Introduction
Large strain viscoplastic deformations of thin structures
occur very often in practical problems. Especially in metal
forming processes the strains applied are ®nite and the
structures under consideration are very thin. The appli-
cation of shell theories to the modelling of such problems
seems, accordingly, to be natural.

The aim of this paper is to give a formulation for ®nite
strain viscoplastic deformations of shells under

� the application of the multiplicative decomposition of the
deformation gradient into elastic and inelastic parts ([6,
24, 25]). The theoretical framework is casted in a general
coordinate system well suited for shell problems.

� the use of a logarithmic-type strain measure.
� the employment of fully three-dimensional constitutive

laws to allow for effects of cyclic loading.
� the use of constitutive equations of the uni®ed type.

Speci®cally a modi®ed version of the Bodner & Partom
model is considered.

Within the class of uni®ed constitutive laws, time-depen-
dent and time-independent effects are described by one
and the same set of constitutive equations. Examples of
such models can be found e.g. in Bodner & Partom [8],
Chaboche [10], Krempl [23, 26], and Steck [43]. In this
paper speci®cally a modi®ed version of the Bodner &
Partom model, the theoretical and numerical aspects of
which are addressed by the authors in [36], is used. The
theoretical setting is carried out in a coordinate-invariant
form which allows for the application of arbitrary curvi-
linear coordinate systems.

Within uni®ed constitutive equations the deformation
is parameterized by the natural time parameter enabling
the description of viscosity effects. This is entirely differ-
ent from alternative theories such as the endochronic
approach where the deformations are also parameterized
by some scalar function not directly related to the real time
scale. For such theories the reader is referred to Atluri [4]
and Im and Atluri [17] who extended the original endo-
chronic concept to include the case of ®nite strains.

As is well known the theory can be formulated in the
material or in the spatial setting. For isotropic cases both
formulations are completely equivalent. However, for an-
isotropic material behavior only the material formulation
is adequate. In this paper we only consider isotropic ma-
terial behavior. Since we want to formulate a theory which
is open for an extension to anisotropy we apply the ma-
terial formulation. Furthermore, we want to work with
mixed tensors (contravariant-covariant strain-like quan-
tities and covariant-contravariant stresses). Therefore, we
introduce a mixed stress tensor in the reference con®gu-
ration which is the pullback of Kirchhoff 's stress tensor.
Obviously this material stress tensor in nonsymmetric. It
has to be observed that this nonsymmetry is only the result
of a geometric transformation and does not re¯ect any
physical features. We think that the constitutive formula-
tion presented in this paper leaves the possibility to extend
it to anisotropy where speci®c modi®cations may prove
necessary.

In recent years considerable developments in the for-
mulation of so-called geometrically exact shell formula-
tions have been achieved (see e.g. [3, 5, 11, 33, 34, 40, 45]).
Although different strain measures are used, a common

Computational Mechanics 21 (1998) 512±525 Ó Springer-Verlag 1998

512

Communicated by S. N. Atluri, 03 February 1998

C. Sansour, F. G. Kollmann
Darmstadt University of Technology, Fachgebiet
Maschinenelemente und Akustik, Magdalenenstr. 4,
64289 Darmstadt, Germany

Correspondence to: F. G. Kollmann

Dedicated to Professor P. Haupt, Kassel, on occasion of his
60th birthday

This research has been performed in Sonderforschungsbereich
298. Financial support of the Deutsche Forschungsgemeinschaft,
Bonn-Bad Godesberg, is greatefully acknowledged.



www.manaraa.com

feature within these formulations is the use of a rotation
and the employment of the plane-stress assumption.
Within physically linear computations ef®cient and robust
®nite elements has been developed. Hybrid stress, as-
sumed strain, enhanced strain as well as the B-bar meth-
ods are able to prevent locking phenomena while
preserving element stability.

For large strain formulations, the plane-stress assump-
tion is too restrictive and the use of a rotation tensor may
render the formulation complicated. Recently different
approaches have been developed to make the shell for-
mulation, on the one hand, capable for the application of a
three-dimensional constitutive law and, on the other hand,
to simplify the formulation itself while retaining the fea-
ture of being geometrically exact. For dropping the plane-
stress assumption, the change of the shell thickness must
be adequately considered. A shell theory with six degrees
of freedom takes constant thickness change into account
but proves to behave to stif¯y. There are two ways to
overcome this de®ciency. Within the ®rst one, the short-
coming of the theory is removed at the level of the nu-
merical discretization. Here, the enhanced strain concept
(BuÈchter et al. [9]) and the concept of assumed strains
(Park et al. [31], Betsch & Stein [7]) have been used
successfully. Within an alternative approach, the men-
tioned shortcoming is removed at the level of the shell
theory itself and independent of the discretization process.
The shell formulation must then allow for a at least linear
distribution of the transversal normal strains over the shell
thickness. For this task to be achieved a seven parameter
shell was recently formulated in Sansour [35] which
proved very effective and robust. A different formulation
is given in Dvorkin et al. [12] where the number of pa-
rameters describing thickness change effects equals the
number of Gaussian integration points used for a nu-
merical integration over the shell thickness.

In this paper the theory given in [35] is modi®ed and
developed further to be capable for handling ®nite strain
viscoplastic deformations. The most important modi®ca-
tion concerns the evaluation of the constitutive law. In
order to be capable to follow cyclic loading, the constitutive
law must be evaluated pointwise over the shell thickness.
The computation of the resultant forces and moments as
well as their linearization is carried out numerically by
means of a numerical integration procedure over the shell
thickness. The internal variables too are to be evaluated at
every integration point over the shell thickness.

Theoretical and computational aspects of ®nite strain
time-independent and time-dependent inelastic deforma-
tions have been considered in Argyris & Doltsinis [2],
Simo [37], Weber & Anand [44], Moran et al. [29],
Eterovic & Bathe [13], Peric & Owen [32], Simo [38], Simo
& Miehe [41], Miehe & Stein [28], Hackenberg & Kollmann
[14]. It should be mentioned, anyhow, that the ®nite ele-
ment formulations so far are typically given for cartesian
coordinates not well suited for shell computations.

Speci®cally in [44] and [13] the integration of the evo-
lution equations was carried out using the exponential
map allowing for an exact ful®llment of the incompress-
ibility constraint of the inelastic deformation. In [32, 13,
28] the elastic constitutive law is assumed to depend on a

logarithmic strain measure. In [36] it is shown that a
systematic exploitation of the geometric setting of the
problem leads to compact and closed forms of the tangent
operator in both the continuum and the algorithmic case
as well.

Whereas there exists an extensive literature dealing with
small strain time independent inelastic shell deformations,
far less publications deal either with ®nite rate indepen-
dent or rate dependent inelatic deformations. Kollmann &
Mukherjee [20] developed a general, geometrically linear
theory of shells. Based on this theory Kollmann & Berg-
mann [21] implemented an axisymmetric hybrid strain
element where Hart's inelastic constitutive model has been
used. A family of mixed and hybrid ®nite elements for
axisymmetric shells using the Bodner &Partom visco-
plastic model is given in Kollmann et al. [22]. The men-
tioned constitutive law has been also recently considered
within small strain deformation of shells (additive de-
composition of strains) by Klosowski et al. [18]. Kleiber &
Kollmann [19] have extended the Bodner & Partom model
to damage and implemented it into the mixed ®nite shell
element described in [22].

A very early attempt to a ®nite strain rate dependent
shell formulation is due to Hughes & Liu [15, 16]. They use
a degenerated shell element and apply an anisotropic
viscoplastic model to solve an impressive number of ex-
amples. Recently, Dvorkin & Pantuso [12] considered the
formulation of the assumed strain element for large time-
independent plastic deformations of general shells. The
special case of axisymmetric shell deformations under the
Kirchhoff-type restriction is considered in Wriggers et al.
[46]. For a ®rst attempt in the development of a general
shell theory for large viscoplastic deformations we refer to
An & Kollmann [1].

The paper is organized as follows: In section 2 basics of
the kinematics of an elastic-viscoplastic body are brie¯y
reviewed. In section 3, and for the paper to be self con-
tained, an outline of the theoretical framework is given.
The elastic constitutive law as well as the employed evo-
lution equations are discussed. In section 4 and 5 the shell
theory and the corresponding principle of virtual work are
presented. In section 6 computational aspects of an im-
plicit time integration procedure are discussed. The time
integration is carried out using the exponential map to
allow for an exact full®lment of the incompressibility
condition of the inelastic deformations. Speci®cally the
algorithmic tangent operator is derived in a closed form.
A four-node ®nite element formulation is developed in
section 7. The ®nite element is based on a nonlinear ver-
sion of the enhanced strain concept as formulated in Simo
& Rifai [42] and applied by them to linear problems.

Various numerical examples are presented demon-
strating the applicability of the theoretical frame work and
the ®nite element formulation. In addition, basic features
of the constitutive model employed are made transparent
by the examples presented.

2
Kinematics of the elastic-inelastic body
Let F be the deformation gradient corresponding to a
deformation of a bodyB, the actual con®guration of which
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is denoted Bt. The corresponding tangent spaces are de-
noted by TXB and TxBt for any X 2 B and x 2 Bt. X,x are
related by means of the point map u: uX � x and we have
F as the tangent of u. A point of departure for an inelastic
formulation constitutes the multiplicative decomposition
[6, 24, 25] of the deformation gradient into an elastic and
an inelastic part

F � FeFp : �1�
For metals, the above decomposition is accompanied with
the assumption Fp 2 SL��3;R� which re¯ects the incom-
pressibility of the inelastic deformations, where SL��3;R�
denotes the special linear group with determinant equal
one. The decomposition (1) is often accepted as equivalent
with the introduction of an intermediate con®guration. In
contrast to this understanding we de®ne

Fp :� TXB! TXB ; �2�
Fe :� TXB! TxBt : �3�
That is, the inelastic part of the deformation gradient is a
map from TXB into itself. It is, accordingly, a material
tensor uniquely de®ned by the evolution equation of an
appropriately de®ned material plastic rate.

The following right Cauchy-Green-type deformation
tensors are de®ned

C :� FTgF ; �4�
Ce :� FT

e gFe ; �5�
CP :� FT

PgFP : �6�
The deformation gradient F is an element of the general

linear group GL��3;R� with positive determinant. There-
fore, we can attribute to its time derivative a left and right
rate

_F � lF ; �7�
_F � FL : �8�
Both rates are mixed tensors (contravariant-covariant).
They are related by means of the equation

L � Fÿ1lF : �9�
Geometrically, (9) is the pull-back of the mixed velocity
gradient from the current con®guration to the reference
con®guration, e.g. L � u��l�:

Since Fp 2 SL��3;R� we can de®ne a right rate ac-
cording to

_Fp � FpLp �10�
which proves more appropriate for a numerical treatment
in a purely material context.

3
Constitutive models

3.1
General considerations
Let s be the Kirchhoff stress tensor. Consider the expres-
sion of the internal power

W � s : l ; �11�

where l is de®ned in (7) and the relation holds
a : b � tr abT for a; b being second order tensors and tr
denoting the trace operation. The expression is rewritten
using material tensors as

W � N : L: �12�
The comparison of (11) with (12) leads with the aid of (9)
to the de®nition equation of the material stress tensor N :

N � u��s� � FTsFÿT : �13�
The tensor N is, accordingly, the mixed variant pull-back
of the Kirchhoff tensor. It coincides with Noll's intrinsic
stress tensor and determines up to a spherical part the
Eshelby stress tensor. In addition, one can say it is a
Mandel-like stress tensor, the later being de®ned with
respect to the so-called intermediate con®guration.

A common feature of uni®ed inelastic constitutive
models is the introduction of phenomenological internal
variables. We denote a typical internal variable as Z. As-
suming the existence of a free energy function according to
w � w�Ce;Z�; the localized form of the dissipation in-
equality for an isothermal process takes

D � s : lÿ qref
_w

� N : Lÿ qref
_w � 0; �14�

where qref is the density at the reference con®guration.
Making use of the relation

_Ce � FÿT
p LTCFÿl

p � FÿT
p CLFÿl

p

ÿ FÿT
p LT

pCFÿl
p ÿ FÿT

p CLpFÿl
p �15�

one may derive

_w � 2CFÿl
p

ow
oCe

FÿT
p : �Lÿ Lp� � ow

oZ
_Z: �16�

The insertion of (16) into (14) leads to

D � Nÿ 2qref CFÿl
p

ow�Ce;Z�
oCe

FÿT
p

� �
: L

� 2qref CFÿl
p

ow�Ce;Z�
oCe

FÿT
p : Lp

ÿqref

ow�Ce;Z�
oZ

_Z � 0 : �17�
By de®ning Y as the thermodynamical force conjugate to
the internal variable Z

Y :� ÿqref

ow�Ce;Z�
oZ

; �18�
and making use of standard thermodynamical arguments,
from (17) follows the elastic constitutive equation

N � 2qref CFÿ1
p

ow�Ce;Z�
oCe

FÿT
p

� 2qref FT
pCe

ow�Ce;Z�
oCe

FÿT
p �19�

as well as the reduced local dissipation inequality

Dp :� N : Lp � Y � _Z � 0 ; �20�
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where (18) has been considered. Dp is the plastic dissi-
pation function. From (20) follows as an essential result
that the stress tensor N and the plastic rate Lp are conju-
gate variables. Observe that the tensor Lp is de®ned in (10).

3.2
The elastic constitutive model
Further we assume that the elastic potential can be de-
composed additively into one part depending only on the
elastic right Cauchy-Green deformation tensor Ce and the
other one depending only on the internal variable Z

w � we�Ce� � wZ�Z�: �21�
De®ning the logarithmic strain measure

a :� ln Ce; Ce � exp a �22�
and assuming that the material is elastically isotropic, one
can prove that the relation holds

Ce
owe�Ce�

oCe
� owe�a�

oa
; �23�

where we �a� is the potential expressed in the logarithmic
strain measure a. The proof is given in the appendix.
Equation (19) results then in

N � 2qref FT
p

owe�a�
oa

FÿT
p : �24�

Note that we is an isotropic function of a. The last equation
motivates the introduction of a modi®ed logarithmic
strain measure

a :� Fÿ1
p aFp : �25�

Since the following relation for the exponential map holds

Fÿ1
p �exp a�Fp � exp a ; �26�

(24) takes

N � 2qref

ow�a�
oa

: �27�
It is interesting to note that (26) together with (22), (4),
and (6) lead to a direct de®nition of a. The relation holds

a � ln�Cÿ1
p C�: �28�

For computational simplicity a linear relation is assumed
and therefore the elastic constitutive model (27) takes its
®nal form

N � K tr aT1� l dev aT �29�
where

aT � ln�CCÿ1
p �; �30�

and K is the bulk modulus and l the shear modulus.
It should be stressed that the reduction of the elastic

constitutive law to that given by (27) results in a consid-
erable simpli®cation of the computations necessary for the
formulation of the weak form of equilibrium and its cor-
responding linearization. The only assumption we used
was the very natural one of having an internal potential
depending on Ce. The following reduction is carried out

systematically. The in¯uence of the viscoplastic effects is
completely captured in the well de®ned quantity Cÿ1

p
which leads to a straightforward and very ef®cient nu-
merical schemes as will be shown below.

3.3
Inelastic constitutive model
We make now use of the form of the inelastic constitutive
model of Bodner and Partom [8]. In section 3.1 we con-
cluded from (20) that the tensors N and Lp are conjugate.
A basic issue now is to put the mentioned constitutive
model in a frame which stands in accord with this fact.
Essentially we have to consider the stress tensor N as the
driving stress quantity while the plastic rate for which an
evolution equation is to be formulated is taken to be Lp.
This leads to the following set of evolution equations

Lp � _/mT ; �31�
_Z � M

Z0
�Z1 ÿ Z� _Wp ; �32�

_Wp � Pdev N
_/�Pdev N;Z� ;

PdevN �
�������������������������������
3
2 dev N : dev N

q
;

�33�

_/ � 2���
3
p D0 exp ÿ 1

2

N � 1

N

Z

PdevN

� �2N
" #

; �34�

m � 3

2

devN
pdevN

�35�
Here, Z0; Z1;D0;N;M are material parameters. The choice
of the transposed quantity in (31) is dictated by the re-
sulting update formula for the stress tensor to be given in a
following section. Moreover, the equation re¯ects the form
given by associative viscoplasticity, when the classical ¯ow
functions are generalized and formulated in terms of
nonsymmetric quantities.

Note that by its very de®nition in (13), the tensor N is
physically equivalent to the Kirchhoff stress tensor in the
sense that both have the same invariants. The nonsym-
metry of N is a result of the geometric transformation from
the actual to the reference con®guration. Likewise, the
skew-symmetric part of the rate Lp is of a purely geometric
origin and can not be regarded as de®ning some kind of
plastic spin. The forward transformation of Lp to the actual
con®guration results necessarily in a symmetric quantity.

In the case of isotropy under consideration, the issue of
nonsymmetry of the stress tensor is irrelevant. Things may
look different when anisotropic effects and kinematic
hardening are considered. The topic of anisotropy is an
active ®eld of research with many open questions.

4
The shell theory

4.1
Preliminaries
We consider now coordinate charts #i which we take to be
convected (attached to the body). For any X 2 B and
x 2 Bt the tangent basis vectors at the reference and actual
con®gurations are given by
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Gi � X;i; gi � x;i ; �36�
where the relations hold Gi � Gj � dj

i � gi � gj � dj
i. Here,

derivatives with respect to #i are denoted by a comma, the
scalar product of vectors by a dot, and dj

i is the Kronecker
delta. The corresponding metrics at the actual and the
reference con®gurations are denoted by g and G, respec-
tively. Their components are given by Gij � Gi � Gj and
gij � gi � gj, respectively. The deformation gradient can be
written down in terms of the basis vectors as

F � gi 
 Gi : �37�
For the construction of a shell theory a reference surface
M is considered, which we will take to be the midsurface
of B. Following standards, the coordinate perpendicular to
M; #3, will now be denoted by z 2 �ÿh=2; h=2�; h 2 R,
and the tangent vectors of TM in the undeformed ref-
erence con®guration by Aa�a � 1; 2� and N, with
N � Aa � 0. We denote their images at an actual con®gu-
ration by aa and a3, where in general a3 � aa 6� 0 and
ja3j 6� 1. Thus we have Aa � Gajz�0 and aa � gajz�0. Fur-
ther, A refers to the metric of the reference midsurface
with covariant components Aab � Aa � Ab; aab are then the
related components at the actual con®guration. Their
contravariant counterparts are denoted as usual by Aab

and aab.
In addition to the curvilinear base vectors we consider

the ®xed cartesian frame ei and de®ne the quantities

cai � Aa � ei; c3i � N � ei ; �38�
to get the following relations

Aa � caiei; N � c3iei; and ei � caiA
a � c3iN �39�

which will be of use later on.
With B we denote the two-dimensional curvature tensor

of the undeformed reference surface with components
Bab � ÿAa � N;b. We also make use of the shifter tensor
J � 1ÿ zB. The exact expressions hold

Ga � Aa � zN;a � �1ÿ zB�Aa � JAa;

Ga � Jÿ1Aa; G3 � N :
�40�

4.2
Shell strain measures
The shell theory is based on the following fundamental
assumption. We assume that any con®guration of the shell
space is determined by the equation

x�#a; z� � x0�#a� � �z� z2v�#a��a3�#a� ; �41�
where x0 denotes a con®guration of the midsurface. By
that the ordered triple �x0; a3; v� de®nes the con®guration
space of the shell.

The following basic features of the above assumption
may be pointed out:

1. The assumed shell kinematics is the simplest possible
which allows for a linear distribution of the transverse
strains over the shell thickness. The constant part of
transverse strains over the shell thickness is described
by a3 whereas v determines the linearly varying part.

Note that the assumption is still valid: ®bres perpen-
dicular to the reference mid-surface remain straight
after the deformation.

2. As a consequence of 1, three-dimensional constitutive
equations can be applied. Accordingly, the formulation
is suitable for small as well as for large strain cases in
elasticity or elasto-viscoplasticity.

3. Without loss of accuracy in the limit case of thin shells,
the use of a rotation tensor can be circumvented leading
to a signi®cant simpli®cation of the whole shell for-
mulation.

By �36�2 and (41) the tangent vectors become

ga �
ox0

o#a
� �z� z2v� oa3

o#a
� z2 ov

o#a
a3

� aa � �z� z2v�a3;a � z2v;aa3 ; �42�
g3 � �1� 2zv�a3 : �43�
For the deformation gradient de®ned in (37) we may write

F � ga 
 Ga � g3 
 N

� aa 
 Ga � ��z� z2v�a3;a � z2v;aa3� 
 Ga

� �1� 2zv�a3 
 N : �44�
By de®ning the tangent map of the midsurface
F0 :� Fjz�0

F0 :� aa 
 Aa � a3 
 N ; �45�
with aa � F0Aa; a3 � F0N and by de®ning further the
tensors

b � a3;a 
 Aa � 2va3 
 N ; �46�
c � �va3;a � v;aa3� 
 Aa ; �47�
we arrive at the following expression for F:

F � �F0 � zb� z2c�Jÿ1 : �48�
By introducing the displacement ®eld u0 and the difference
vector w according to

u0 :� x0 ÿ X0 �49�
w :� a3 ÿ N ; �50�
with X0 de®ning a reference con®guration of the midsur-
face, we get for (45)±(47)

F0 � �Aa � u0
;a� 
 Aa � �N� w� 
 N ; �51�

b � ÿB� w;a 
 Aa � 2v�N� w� 
 N ; �52�
c � ÿvB� �vw;a � v;a�N� w�� 
 Aa : �53�
Making use of (48), the right Cauchy-Green strain tensor
of the shell space given in (4) takes the form

C � JÿT�F0T

F0 � z�F0T

b� � bTF0�
� z2�bTb� F0T

c� cTF0�
� z3�bTc� cTb� � z4cTc�Jÿ1: �54�

The last expression motivates the de®nitions

C0 � F0T

F0 �55�
K � F0T

b� bTF0 �56�
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with the help of which we write for (54)

C � JÿT�C0 � zK� � � ��Jÿ1: �57�
In what follows we assume that the shell is thin in the
sense that the ®rst two strain measures C0 and K are the
dominant ones. The inclusion of all other strain measures
is of course possible but is left out for the sake of sim-
plicity.

We consider now the following decompositions

u0 � uiei; w � wiei �58�
C0 � CabAb 
 Aa � C3aAa 
 N

� Ca3N
 Aa � C33N
 N; �59�
K � KabAb 
 Aa � K3aAa 
 N

� Ka3N
 Aa � K33N
 N: �60�
For the components of C0 and K, (51), (52), (55) and (56)
reveal the following expressions:

Cab � Aab � Ab � u0
;a � Aa � u0

;b � u0
;a � u0

;b; �61�
Ca3 � N � u0

;a � Aa � w � u0
;a � w; �62�

C3a � Ca3; �63�
C33 � 1� 2N � w � w � w; �64�
Kab � Bab � 2�N;a � u0

;b � N;b:u
0
;a � Aa � w;b

� Ab � w;a � u0
;a � w;b � u0

;b � w;a� ; �65�
Ka3 � �N;a:w � N � w;a � w:w;a�

� 2v�Aa � w � N � u0
;a � w � u0

;a�; �66�
K33 � 4v�1� 2N � w � w � w� �67�
which are to be understood as the basic strain measures of
the shell theory.

The ®nite element formulation to be given later on is
carried out on the ground of the above strain measures in
terms of cartesian components of u0 and w (Eq. 58). Ex-
plicitly we have:

Cab � Aab � cbiui;a � caiui;b � ui;aui;b; �68�
Ca3 � c3iui;a � caiwi � ui;awi; �69�
C3a � Ca3; �70�
C33 � 1� 2c3iwi � wiwi; �71�
Kab � Bab � c3i;aui;b � c3i;bui;a � caiwi;b

� cbiwi;a � ui;awi;b � ui;bwi;a; �72�
Ka3 � �c3i;awi � c3iwi;a � wiwi;a�

� 2v�caiwi � c3iui;a � wui;a�; �73�
K33 � 4v�1� 2c3iwi � wiwi�: �74�
Eqs. (68) to (74) are in fact quite compact expressions well
suited for a numerical implementation.

5
The principle of virtual work
Let S be the second Piola-Kirchhoff stress tensor of the
shell space.

The principle of virtual displacement in three-dimen-
sions readsZ
B

1

2
S : dC dV ÿ

Z
B

f � dx dV ÿ
Z

oB
t � dx dS � 0 ; �75�

where f, t are the body and the surface forces, dV � J dr dz
(Naghdi [30]) with J denoting det J, and dr a surface el-
ement of the shell midsurface given by dr � ����

A
p

d#1 d#2;
A � det�Aab�. We further assume that the shell midsurface
M has a smooth curve oM as a boundary, with the
parameter length s and the external normal vector m. The
boundary of the shell consists of three parts: an upper, a
lower, and a lateral surface. If we denote the upper surface
by oB�, the lower one by oBÿ and the lateral one by oBs

and make use of the notation J� � Jjz�h=2; Jÿ � Jjz�ÿh=2,
and Js for J at the lateral surface, we may write for the
surface elements dS� � J� dr; dSÿ � Jÿ dr and
dSs � Js dz ds. First let us consider the external virtual
work:

dWext :�
Z
B

f � dx dV �
Z

oB
t � dx dS ; �76�

With the de®nitions

p :�
Z h=2

ÿh=2

fJ dz� J�t� � Jÿtÿ ; �77�

l :�
Z h=2

ÿh=2

zfJ dz� h

2
J�t� ÿ h

2
Jÿtÿ ; �78�

q :�
Z h=2

ÿh=2

z2fJ dz� h2

4
J�t� � h2

4
Jÿtÿ ; �79�

ps :�
Z h=2

ÿh=2

tsJs dz ; �80�

ls :�
Z h=2

ÿh=2

ztsJs dz ; �81�

qs :�
Z h=2

ÿh=2

z2tsJs dz ; �82�

Eq. (76) reduces to

dWext :�
Z
M

�p � dx0 � �l� vq� � da3 � �q � a3�dv� dr

�
Z

oM
�ps � dx0 � �ls � vqs� � da3

� �qs � a3�dv� ds �83�
as the two-dimensional form of the external power.

To consider the internal virtual power we notice ®rst
that it is more appropriate to make use of the relation

S � Cÿ1N �84�
since the inelastic constitutive model, as shown in section
3, is formulated in terms of N. We de®ne ®rst the pull-back
of S under J which gives a stress tensor de®ned with res-
pect to the midsurface

S0 � Jÿ1Cÿ1NJÿT: �85�
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Note that S0 is still z-dependent. Eqs. (57), (84) and (85)
motivate the de®nitions

n :�
Z �h=2

ÿh=2

1

2
S0J dz �

Z �h=2

ÿh=2

Jÿ1Cÿ1 ow
oa

JÿTJ dz �86�

m :�
Z �h=2

ÿh=2

zJÿ1Cÿ1 ow
oa

JÿTJ dz �87�

with the help of which as well as with (83), the principle of
virtual power given in (75) takes the formZ
M

�n : dC0 �m : dK� dr

ÿ
Z
M

�p � dx0 � �1� vq� � da3 � �q � a3�dv� dr

ÿ
Z

oM
�ps � d x0 � �1s � vqs� � da3

� �qs � a3�dv�ds � 0 : �88�
For given external forces, the integrals (77)±(82) can be
elaborated in almost closed form. For very thin shells the
terms vq � da3; q � a3dv in (88) can be neglected as of being
of higher order. Contrasting this, and in order to allow for
the use of complex constitutive laws and path dependent
behaviour (e.g. cyclic loading), the elaboration of (86) and
(87) is carried out in practical computations numerically.
That is, the constitutive equations are considered point-
wise over the shell thickness.

6
Computational issues and time integration
In this section computational issues in conjunction with a
possible ®nite element formulation are discussed. The time
integration procedure of the constitutive model at hand is
outlined and necessary operations of local iterations are
discussed. A closed form of the algorithmic tangent op-
erator is derived.

6.1
Time integration and local iteration
Let be given two discrete times tn and tn�1 with time in-
crement Dt. The understanding that the unimodular ten-
sor FP is an element of the Lie group SL��3;R3� while Lp is
an element of the corresponding Lie algebra motivates the
use of the exponential map for time integration (see the
introduction for the discussion of related work). We thus
consider the following updating formula

Fpjn�1 � Fpjnexp�DtLp� �89�
for some Lp in the interval Dt the choice of which is de-
®ned by means of the integration procedure. This algo-
rithm preserves the condition of plastic incompressibility
exactly.

The elastic strain measure CCÿ1
p at time step n� 1 reads

CCÿ1
p jn�1 � Cjn�1 exp�ÿDtLp�Cÿ1

p jnexp�ÿDtLT
p� �90�

The plastic rate must be de®ned in accordance with the
constitutive law under consideration. We make use of the

predictor-corrector method according to which, at an
iteration step i, the constitutive law is assumed ®rst
elastic de®ning the so called trial step. Within the plastic
corrector step, the right Cauchy-Green tensor C is held
®xed while Cp is updated so as to ful®ll the constitutive
law.

We stipulate that Lp is co-axial to NT
n�1 and therefore we

choose

Lp � _/mT
n�1 �91�

for some _/ in the interval Dt. The value of the plastic rate
_/ is so far unde®ned but it is constrained to assume a

value within the time increment Dt in accord with the
constitutive law at hand.

Due to the assumed isotropy of the problem (Eq. (29)),
co-axiality of N and aT or of N and CCpÿ1

, respectively,
holds. Thus, the single terms in the right hand side of (90)
can be rearranged and the logarithm of the whole
expression is the sum of the logarithm of the single
terms:

ln�CCÿ1
p �n�1 � ln�Cn�1 exp�ÿDtLp�Cÿ1

P jn exp�ÿDtLT
p��;

� ln�Cn�1Cÿ1
P jn exp�ÿ2DtLT

p��;
�aT

n�1 � ��atrial�T ÿ 2DtLT
p :

�92�

Note that ��atrial�T de®ned as lnCn�1Cÿ1
p jn. A similar result

for symmetric quantities de®ned with respect to the so
called intermediate con®guration is already obtained in
[28].

In accord with the last relation the updating of the stress
tensor has the form

Nn�1 � Ntrial ÿ l2DtLT
p ; �93�

� Ntrial ÿ 2Dt _/ lmn�1 : �94�
For some _/ in the corresponding interval. Note that Ntrial

is given as a function of ��atrial�T.
From the de®nition of p in (33) and with the use of (94)

we have

Pn�1 � Ptrial ÿ 3Dtl _/ : �95�
We are now looking for the determination of _/ in con-
sistency with (32)±(35) as well as with (95). In so doing we
adopt the mid-point rule according to which we have

P � 1
2 �Pn�1 �Pn� � 1

2�Ptrial ÿ 3Dtl _/�Pn� ; �96�
_Z � Zn�1 ÿ Zn

Dt
; �97�

Z � 1
2�Zn�1 ÿ Zn� : �98�

Inserting the last equations in (32), (33) we get, depending
on _/, an explicit equation for the determination of the
internal variable Z:

Z � mDtP _/Z1 � 2Z0Zn

mDtP _/� 2Z0

: �99�

Making use of this equation in the formulation for _/ (Eq.
(34)):
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_/ � 2���
3
p D0 exp ÿ 1

2

N � 1

N

Z�P; _/�
P

 !2N" #
�100�

and with (95) we get a nonlinear equation for the deter-
mination of _/. The equation is solved iteratively by the
Newton-Raphson method. Note that _/ is a scalar function
and not a rate. Therefore, it can be determined uniquely
from (100).

6.2
The algorithmic tangent operator
With (94) at hand we can systematically derive the algo-
rithmic tangent operator, which is given as the linearisa-
tion of S with respect to C. One has ®rst

S � Cÿ1�Ntrial ÿ 2Dt _/lm�: �101�
The derivative with respect to C gives

oS

oC
� oCÿ1

oC
�Ntrial ÿ 2Dt _/lm� � Cÿ1 oNtrial

oC

ÿ 2Dtl
o _/

oPtrial

oPtrial

oNtrial

oNtrial

oC
Cÿ1m

ÿ 2Dtl _/Cÿ1 om

oNtrial

oNtrial

oC
�102�

We need now an expression for o _/=oPtrial which depends
on the employed constitutive law. We observe that _/ is to
be understood as a function of Z as well as of P. The same
holds for Z which depends on _/ as well as on P. On the
other hand P itself is, according to (95), a function of Ptrial

and _/. Taking all this in consideration, (100) gives

o _/

oPtrial
� o _/

oP
oP

oPtrial
� oP

o _/

o _/

oPtrial

 !

� o _/
oZ

oZ

oPtrial
� oZ

o _/

o _/

oPtrial

 !
�103�

which results in

o _/

oPtrial
�

o _/
oP

oP
oPtrial � o _/

oZ
oZ

oPtrial

1ÿ o _/
oP

oP
o _/
ÿ o _/

oZ
oZ
o _/

�104�

Further, one has

oPtrial

oNtrial
� m; �105�

o�m�ji
o�N�sr

� ÿ 1

P
�m�ji�m�rs �

3

2P

�
dr

i d
j
s ÿ 1

3d
r
sd

j
i

�
; �106�

as well as

o�Ntrial�tq
o��a�ab

o��a�ab
o�C�rs

�
�

K ÿ 1

3
l�Cÿ1�rsdt

q � l�Cÿ1�rtds
q

�
: �107�

The last relation is proved in the appendix.
With the above results at hand we arrive for (102) at the

very compact and closed form

o�S�ij
o�C�rs

�ÿ �Cÿ1�ir�Cÿ1�sk��Ntrial�jk ÿ 2Dt _/l�m�jk�

� b1�Cÿ1�ij�Cÿ1�rs � b2�Cÿ1�isCÿ1�rj

� b3�Cÿ1�ik�m�jk�Cÿ1�rt�m�st; �108�
where we have

b1 � K ÿ 1

3
l� Dtl2

_/
Pn�1

; �109�

b2 � lÿ 3Dtl2
_/

Pn�1
; �110�

b3 � ÿ2Dtl2 o _/

oPtrial
ÿ

_/
Pn�1

 !
: �111�

The relation (104) is to be used.

6.3
The exponential map with a nonsymmetric argument
As documented in (89), the updating of FP is carried out
using the exponential map which insures the full®llment of
the incompressibility condition of the inelastic deforma-
tions. From (91) it is clear that the ¯ow rule is formulated
in terms of nonsymmetric quantities due to the fact that
the stress tensor N is nonsymmetric. In the literature, so
far, the use of the exponential map was restricted to
symmetric quantities and its evaluation was carried out by
making use of the spectral decomposition. For nonsym-
metric arguments the transformation to principal direc-
tions is not possible in general. In the following we give a
general and simple algorithm for the evaluation of the
exponential map with arbitrary arguments by exploiting
the Cayley-Hamilton equation.

For any argument b, symmetric or not, we are con-
cerned with the evaluation of exp b. Let I1; I2; I3 be the
invariants of b de®ned by the following equations

I1 � tr b ; �112�
I2 � 1

2�I2
1 ÿ tr b2� ; �113�

I3 � det b : �114�
The Cayley-Hamilton equation gives

b3 � I31ÿ I2b� I2
1 : �115�

The exponential map itself can be written as the following
serie,

exp b � 1� b� 1

2!
b2 � 1

3!
b3 � 1

4!
b4 � � � � �116�

On the other hand and since exp b is an isotropic function
of b the relation holds

exp b � a0�I1; I2; I3�1� a1�I1; I2; I3�b
� a2�I1; I2; I3�b2 �117�
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for a0,a1,a2 functions of the invariants of b. The idea now
is to compute the values of a0,a1,a2 in evaluating (116) by
making successive use of (115).

For any power n one has ®rst

bn � c�n�0 1� c�n�1 b� c�n�2 b2 ; �118�
with c�n�0 ; c�n�1 ; c�n�2 functions of the invariants of b. Specif-
ically for n � 3 one has

c�3�0 � I3; c�3�1 � ÿI2; c�3�2 � I1 : �119�
Starting from the last equation the functions c�n�0 c�n�1 ; c�n�2
can be successively computed by making use of the rela-
tions

c�n�0 � I3c
�nÿ1�
2 ; �120�

c�n�1 � c�nÿ1�
0 ÿ I2c

�nÿ1�
2 ; �121�

c�n�2 � c�nÿ1�
1 � I1c

�nÿ1�
2 ; �122�

the validity of which follows immediately from the Cayley-
Hamilton equation.

The exponential map is now given by the evaluation of
(117) where the comparison with (116) together with the
last equations gives

a0 � 1� 1

3!
I3 �

XN

n�4

1

n!
c�n�0 ; �123�

a1 � 1ÿ 1

3!
I2 �

XN

n�4

1

n!
c�n�1 ; �124�

a2 � 1

2
� 1

3!
I1 �

XN

n�4

1

n!
c�n�2 : �125�

The number N is dictated by a desired accuracy up to
which the exponential series is evaluated.

7
The finite element formulation

7.1
Interpolation of the geometry
The geometric quantities describing the shell surface (the
®elds Bab; cai; c3i;

����
A
p

) are taken exactly at every integra-
tion point. The natural coordinates #a describing the shell
surface are maped on the bi-unit square using bilinear
interpolations.

On the other hand the cartesian components of the
kinematical ®elds u, w as well as v are interpolated using
the bilinear interpolation functions. The same interpolat-
ions are taken for every Cartesian component of u and w.

7.2
An enhanced strain functional
We formulate ®rst a strain-based element. In so doing we
appeal to the enhanced strain concept in the spirit of Simo
and Rifai [42] applied by them to linear problems. Ac-
cordingly the strain tensor itself is enhanced. This is
contrasted with the nonlinear version of the concept as
given by Simo and Armero [39] where the deformation
gradient was enhanced. We consider accordingly the fol-
lowing functional

1

2

Z
B

�C� Ci�ÿ1N : d�C� Ci� dV ÿ
Z
B

f � dx dV

ÿ
Z

oB
f � dx dS � 0 : �126�

where we have

N � 2qref

ow
o~a
� K tr ~aTl� l

�
~aT ÿ 1

3
tr ~aTl

�
; �127�

~a � ln�Cÿ1
p �C� Ci�� �128�

and Ci is the enhanced strain ®eld. Since Ci is assumed
independent of the displacements, (126) splits into the two
equations

1

2

Z
B

�C� Ci�ÿ1N : dC dV ÿ
Z
B

f � du dV

ÿ
Z

oB0

t � du dS � 0 �129�
and

1

2

Z
B

�C� Ci�ÿ1N : dCi dV � 0 : �130�

The choice of the interpolation functions for Ci is crucial
in order to arrive at well behaving elements. First, we re-
strict Ci to be of the form Ci � JÿTC0i

Jÿ1 where C0i

is
independent of z. This is equivalent to an enhancement of
the strains related to the shell midsurface alone.

These above equations are still de®ned for the three-
dimensional shell body. The reduction to two dimensions
is carried out in the same way as demonstrated in (77)±
(88). One hasZ
M

�n : dC0 �m : dK� dr

ÿ
Z
M

�P � dx0 � �l� vq� � da3 � �q � a3�dv� dr

ÿ
Z

oM

�
Ps � ox0 � �1s � vqs� � da3

� �qs � a3�dv
�

ds � 0 ; �131�Z
M

n : dC0i
dr � 0 : �132�

The external load is de®ned in (77)±(82) while n;m are
now de®ned according to

n : �
Z �h=2

ÿh=2

Jÿ1�C� Ci�ÿ1 ow
o~a

JÿTJ dz �133�

m : �
Z �h=2

ÿh=2

zJÿ1�C� Ci�ÿ1 ow
o~a

JÿTJ dz : �134�
The interpolation functions of the enhanced strains C0i

are
taken to be of the form

Ci
11�n; g� � C1n� C2ng �135�

Ci
22�n; g� � C3g� C4ng �136�

Ci
33�n; g� � C5n� C6g� C7ng �137�

Ci
12�n; g� � C8n� C9g� C10ng �138�
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Ci
13�n; g� � C11n� C12ng �139�

Ci
23�n; g� � C13g� C14ng : �140�

n and g are the local coordinates at the element level.
Clearly, the ®elds Ci

11 . . . Ci
23 are the components of C0i

with respect to the natural curvilinear base system Gi.
The introduction of interpolation functions of the dis-

placement ®elds as well as of the enhanced strain ®elds in
(117) and (118) leads to two coupled nonlinear sets of
algebraic equations. The enhanced strain ®eld is assumed
discontinuous over elements and is eliminated at the ele-
ment level.

The linearization of (119) and (120) must be carried out
numerically too. The tangent operator for the shell space
given by (108) is a fourth order tensor which we denote by
H. The systematic linearisation of (119) and (120) leads to
the following expressionsZ
M

�Dn : dC0 � Dm : dK� dr

�
Z
M

��H0�DC0 � DC0i� � H1DK� : dC0

� �H1D�C0 � C0i��H2DK� : dK�; dr ; �141�Z
M

Dn : dC0i
dr �

Z
M

��H0�DC0 � DC0i�

� H1DK� : dC0i� dr : �142�

The de®nitions hold

�H0�ijkl : �
Z �h=2

ÿh=2

�Jÿ1�ia�JÿT�jb�H�abrs

�Jÿ1�kr �JÿT�lsJ dz ; �143�

�H1�ijkl : �
Z �h=2

ÿh=2

z�Jÿ1�ia�JÿT�jb�H�abrs

�Jÿ1�kr �JÿT�lsJ dz ; �144�

�H2�ijkl : �
Z �h=2

ÿh=2

z�Jÿ1�ia�JÿT�jb�H�abrs

�Jÿ1�kr �JÿT�lsJ dz : �145�

The integral in (129)±(131) must be carried out numeri-
cally.

Further details of the implementation are standard and
are hence omitted.

8
Numerical examples
We consider some numerical examples to illustrate the
applicability of viscoplastic formulation as well as the shell
theory to ®nite deformation shell problems. In all exam-
ples the following material data of titan as reported in [8]
is considered:

K � 123000 N/mm2;

l � 44000 N/mm2;

D0 � 10000 1=sec;

Z0 � 1150 N/mm2;

Z1 � 1400 N/mm2;

N � 1;

M � 100:

8.1
Pinched cylinder with free edges
A cylinder with free edges is subject to two opposite
point loads at the top and the bottom. The problem is
described in Fig. 1. Making use of symmetry conditions
only one-eighth of the cylinder is modeled using 20 ´ 30
elements. The depicted curves, given in Fig. 2, are those
for the vertical displacement at the top and for the
horizontal displacement at the side of the cylinder. The
computation is carried out displacement-controlled with
a time step DT � 1:0 sec and for altogether 140 time
steps. The load history is chosen so as to correspond to
a linearly increasing displacement at the side of the
cylinder until a maximum is arrived and then to a lin-
early decreasing displacement at the same point until
the mentioned displacement vanishes. In both directions
the deformation velocity is 1 mm/sec.

Fig. 1. Pinched cylinder with free edges. Problem de®nition

Fig. 2. Pinched cylinder with free edges. Load-displacement curve
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In Fig. 3 the con®guration of the cylinder corresponding
to maximum deformation is given. Also given is an un-
loaded con®guration corresponding to a vanishing exter-
nal loading.

8.2
Pinched cylinder with rigid diaphragm
The cylinder with rigid diaphragms is loaded by a line load
acting in the x3 direction at a segment of length of 0:25Rp.
The problem is described in Fig. 4. Making use of sym-
metry conditions only one-eighth of the cylinder is mod-
eled using 32 � 32 elements. The depicted curves (Fig. 2.2)
are those of the vertical displacement at the top (point A)
as well as of the horizontal displacement at the side of the
cylinder (point B). The load history corresponding to a
case of loading/unloading/negative-loading is chosen so as
to result in a linearly increasing/linearly decreasing dis-
placement at the top with a deformation velocity of 1 mm/
sec. The time step used is 0.5 sec and altogether 400 time
steps are computed.

Speci®cally, a vanishing displacement at point A does
not correspond to a vanishing displacement at point B.
Moreover, the latter displacement changes even sign.
Within the last 10 time steps the displacement of point A is
frozen. Relaxation effects take then place as slightly indi-
cated in the plot.

In addition, the vertical displacement of point A cor-
responding to a solution of only 24 � 24 elements is in-
cluded in Fig. 5. Qualitatively the response of the shell is
still well captured, although the solution is clearly stiffer
than that of the ®ne mesh.

A con®guration corresponding to a maximum defor-
mation of the cylinder is given in Fig. 6 (half cylinder). We
note that the unloaded con®guration exhibits only minor
relaxation in comparison with the loaded one. In addition
the ®nal arrived deformed con®guration is given in Fig. 3
as well.

8.3
Pinched hemispherical shell
The problem con®guration is de®ned in Fig. 7. The sphere
is subject to the action of two pairs of line loading in the x-

Fig. 3. Pinched cylinder with free edges. Deformed con®gurations

Fig. 5. Pinched cylinder with rigid diaphragm. Load-displacement
curves

Fig. 6. Pinched cylinder with rigid diaphragm. Deformed con-
®gurations

Fig. 4. Pinched cylinder with rigid diaphragm. problem de®nition Fig. 7. Pinched hemispherical shell. Problem de®nition
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and y-directions. The segment at each part of the loading
has a length of 0:25Rp. Here one-quarter of the shell is
modeled using 32� 32 elements. The plots show the re-
sponse at the points on the coordinate axes in both di-
rections. The computation is carried out displacement-
controlled with a time step of DT � 0:1 sec. Taking the
deformation at the point on the x-coordinate axes as a
reference and choosing the velocity of that point to be 0.4
mm/sec, the deformation is linearly increased for 100 time
steps and then decreased in the same manner for further
100 time steps. The corresponding load- displacement
curves are given in Fig. 8. The maximal deformed con-
®guration is given in Fig. 9.

9
Conclusion
In this paper a theory of shells including thickness change
has been applied for ®nite strain viscoplastic deforma-
tions. The essential aspects of the formulation are

1. The ®nite strain theory of viscoplasticity is based on the
multiplicative decomposition of the deformation gra-
dient and the use of a logarithmic-type strain tensor.

2. Inspite of the ®nite strain formulation with logarithmic
strains, a closed form of the algorithmic tangent oper-
ator for an implicit time integration is achieved.

3. A general algorithm to compute the exponential map for
nonsymmetric arguments is provided.

4. A modi®ed version of the Bodner &Partom uni®ed
constitutive equations of viscoplasticity is employed.

5. The shell theory incorporates seven degrees of freedom
and allows for the application of three-dimensional
constitutive laws without any modi®cations.

6. The constitutive law and the evolution equations are
evaluated pointwise over the shell thickness. The re-
sultant stress and moment tensors as well as the cor-
responding tangent material tensors are achieved by
means of a numerical integration process over the shell
thickness.

7. An enhanced ®nite element formulation is developed.
The results of several examples con®rm the element
formulation.

Further it is to be stressed that, although in all examples
the ®nite element behaved very well, the stability of the
enhanced strain formulation for nonlinear problems is still
an open question.

A Appendix

Derivation of Equation (23)
the 1 is the second order unit tensor and I

4
is the fourth

order unit tensor.
We want to prove that

owe

oCe
:
oCe

oa
� Ce

owe

oCe
: �A:1�

Since Ce � expa from the Taylor series representation of
the exponential map follows

Ce � 1� a� a2

2!
� a3

3!
� � � � �A:2�

Considering (A.2) and the isotropy of the function we the
left hand side of (A.1) takes
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where the symmetry of Ce has been considered.

The derivative of the logarithmic strain tensor
Since our elastic strain tensor is taken to be the loga-
rithmic one (Eq. (27)), at the latest when deriving the
tangent operator, an expression for the derivative of the
logarithmic strain tensor with respect to C is then needed.
As far as the logarithmic strain tensor has been used this
task was achieved either approximately using speci®c
assumptions and limitations [13, 32], or by appealing to
the spectral decomposition [28] which is in fact very
complicated due to the dependence of the eigen vectors
on the deformation itself. In the following we derive a
very simple formula for the expression we are looking for
which seems to be completely overlooked in the litera-
ture.

Fig. 8. Pinched hemispherical shell. Load-displacement curves

Fig. 9. Pinched hemispherical shell. Deformed con®guration
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First we observe that the following general relation
holds

N � 2qref C
ow
oC

: �A:4�
On the other hand we have already proven the relation

N � 2qref

ow
o�a

: �A:5�
Since w is function of �a and via the latter a function of C,
the relation must hold

N � 2qref C
ow
o�a

:
oa

oC

� �
: �A:6�

Due to (A.5) we have further

�N�ji � �C�ik �N�ba
o��a�ab
�C�kj

 !
�A:7�

from which it follows

o��a�ab
�C�ij

� �Cÿ1�iadj
b : �A:8�

This is a very remarkable relation. Although �a does depend
explicitly on Cp, in formula (A.8) only C is explicitly in-
volved. Moreover, the formula is extremely simple as
compared with a derivation via the spectral decomposition
theorem.

With the above relation at hand, and with

o�Ntrial�tq
o��a�ab

� �K ÿ 1
3l�db

ad
t
q � ldt

ad
b
q ; �A:9�

Eq. (107) follows immediately.
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